

Semantic fluency vs traditional vocabulary

Aisling Murray ESRI

An Roinn Leanaí agus Gnóthaí Óige Department of Children and Youth Affairs

10th Annual Research Conference 2018

- Wave 1,2 and 3 from the Child Cohort of GUI was used in this study.
- There was 6,216 17/18-year-olds at wave 3 of the study.
- Cognitive Tests
- Semantic fluency: Young Person was asked to name as many animals as they could think of in one minute
 - Responses were called out by the participant and recorded by the interviewer.
 - Previously used by the Irish Longitudinal Study of Aging (TILDA)
- Vocabulary:
 - The task included 20 words that increase in difficulty
 - Choose word closest in meaning to the target word (multiple choice)
 - E.g Target: 'Run' Choose from 'talk'/'sprint'/'rip'/'tidy'/'cheer'
 - Respondents completed the test on paper with a time limit of four minutes
 - The test was previously used in the Millennium Cohort Study and the BCS70

About vocabulary measures

- Vocabulary is a commonly used measure for cognitive ability
- Commonly one of the sub-tests in IQ batteries
 - Often with one of the highest correlations with measures of overall ability
- Why might vocabulary be a good proxy for general intelligence?
 - A wider vocabulary reflects wider knowledge and/or reading on other subjects
 - Starting with good language skills may help the individual to learn (e.g. read and understand text books) and to verbally encode/store new knowledge

• BUT

- Vocabulary tends to be associated with socio-economic advantage from an early age
- Traditional written tests may pose a disadvantage for individuals with specific learning disabilities (e.g. dyslexia)
- Some students may be more practised at written/multiplechoice tests
- Nerves about a formal test may put some people off

About semantic fluency measures

- Typically participants are asked to name as many 'things' in a particular category within a time limit
- Commonly 'animals' but could also be 'fruit', 'colours' or 'words beginning with S'
- Obviously a high verbal component, but also:
 - Attention (keeping track of previous responses to avoid repetition)
 - Crystallised knowledge (how many animals do you know)
 - Processing (accessing knowledge under time pressure)

- Maybe more 'fun' and less testanxiety than a written test
- Almost everyone should be able to name at least some animals – so unlikely to get a score of 0
- Don't know what the expected score is
- Not reliant on written presentation
- BUT
 - Actual skills measured are less defined than with traditional vocabulary measures
 - Less widely used as a standard measure; fewer comparators available

DESCRIPTIVES

Naming task descriptives

Normal dist.

- Mean = 21.5
- SD = 5.7
- Skewness = 0.37

Some socio-dem differences

- Boys higher than girls (21.8 v 21.3)
- Highest income group better than those in the lowest (22.6 v 20.0)

Vocabulary descriptives

Normal dist.

- Mean = 8.7
- SD = 3.3
- Skewness = 0.36

Some socio-dem differences

- Boys higher than girls (8.9 v 8.5)
- Highest income group better than those in the lowest (9.7 v 7.6)

RELATIONSHIP TO JUNIOR CERT RESULTS

Summarising Junior Cert scores

- Participants self-reported their Junior Cert subjects and grades in the 17/18 year interview
 - Summarised to give a Junior Cert score of 1-7

Grade – Higher Level	Score	Grade – Lower Level	Score
А	7	А	4
В	6	В	3
С	5	С	2
D	4	D	1
E	3	E	1

• Means: JC English = 4.8; Maths = 4.2; Science 5.0

Correlations with Junior Cert

	Vocabulary	JC English	JC Maths	JC Science
Naming Task	.32*** (n=6102)	.27*** (n=5982)	.31*** (n=6017)	.30*** (n=5429)
Vocabulary Multiple-Choice	-	.42*** (n=5956)	.46*** (n=5991)	.43*** (n=5414)
Z-score for differences between correlations		-11.26***	-11.40***	-8.93***

- Both tasks were significantly and positively correlated with Junior Cert results in English, Maths and Science
- However, the correlations between Junior Cert results and the vocabulary test were significantly higher
 - Vocabulary a better measure of ability or more similar to exam style?
- Strength of correlations was similar across different subjects (i.e. not higher for English)
 - Both may be picking up general ability as opposed to language specifically

Naming task - model

		Std. Coeff. Gender and income	Std. Coeff. Add JC
Gender (ref: female)	Male	0.018	0.040 🟠
Income (ref: highest)	Lowest income	-0.168 🖊	-0.053 🕂
	2 nd income	-0.085 🖊	0.003
	3 rd income	-0.073 🖊	-0.021
	4 th income	-0.037 🖊	0.001
JC results	JC English		0.069 🟠
	JC Maths		0.118 🟠
	JC Science		0.165 🚹
Adj. R-squared		.02	.11

Junior Cert results are a better predictor of naming task scores than gender or income

Vocabulary - model

		Std. Coeff. Gender and income	Std. Coeff. Add JC	
Gender (ref: female)	Male	0.044 🚹	0.085 合	
Income (ref: highest)	Lowest income	-0.205 🖊	-0.026	
	2 nd income	-0.158 🖊	-0.020	
	3 rd income	-0.085 🖊	-0.003	
	4 th income	-0.080 🖊	-0.022	
JC results	JC English		0.182 合	
	JC Maths		0.190 合	
	JC Science		0.180 👉	
Adj. R-squared		.04	.24	

Junior Cert results are a better predictor of vocabulary scores than gender or income

LONGITUDINAL CORRELATIONS WITH TESTS AT 9 AND 13 YEARS

Summary of earlier tests

- At 9 years
 - Tests completed in school
 - Adaptation of Drumcondra Reading and Maths tests
 - Linked to the curriculum for class year
- At 13 years
 - Tests completed in the home
 - Drumcondra verbal and numerical reasoning
 - Not so linked to curriculum
 - Matrices sub-test from the British Abilities Scales
 - Non-verbal
 - Spatial/visual task

Correlations with 9 year tests

	Drumcondra Reading	Drumcondra Maths
Naming Task	.30*** (n=6013)	.24*** (n=6064)
Vocabulary Multiple-Choice	.54*** (n=5977)	.37*** (n=6028)
Z-score for differences between correlations	-18.75***	-9.15***

- Both tasks were significantly and positively correlated with performance on the Drumcondra Reading and Maths tests measured at age 9 years (logit scores)
- Again, the correlations between Drumcondra tests and the vocabulary measure were significantly higher
 - Although less of a gap between vocabulary and naming task in terms of correlation with Maths scores
- Vocabulary correlation higher with reading than maths

Correlations with 13 year tests

	Drumcondra Verbal Reasoning	Drumcondra Numerical Reasoning	BAS Matrices
Naming Task	.34***	.28***	.22***
	(n=5661)	(n=5619)	(n=5779)
Vocabulary Multiple-Choice	.64***	.43***	.31***
	(n=5642)	(n=5600)	(n=5753)
Z-score for differences between correlations	-25.13***	-10.31***	-5.95***

- Both tasks were significantly and positively correlated with cognitive tests at 13: verbal, numerical and spatial (matrices) reasoning.
- The vocabulary test had higher correlations than the naming task across all tests
 - Most noticeable for verbal reasoning (.64)
- The matrices test was less highly correlated with both 17/18 year tests as might be expected.

DIFFERENT PATTERNS FOR YOUNG PEOPLE WITH A SPECIFIC LEARNING DISABILITY?

Comparing young people with and without an SLD

- Presence of a specific learning disability reported by primary caregiver at 17/18 years (n=621, 10%)
- Participants reported to have an SLD had lower mean scores on both the naming task and vocabulary measure

	With SLD	No SLD
Naming Task - Mean	20.2 (n=598)	21.6 (n=5457)
Vocabulary - Mean	7.1 (n=580)	8.9 (n=5435)

- Does the written format of the vocabulary test disadvantage young people with an SLD?
- For entire sample, the vocabulary measure was more strongly associated with Junior Cert results
- If the sample is split by parent-reported SLD, will the pattern of association be the same for both groups?

Different patterns for SLD

- Both naming task and vocabulary tests show a normal distribution
- Associations with other measures of cognitive ability are positive and significant, but stronger for the vocabulary task
- However, the 'advantage' for vocabulary is not as marked among young people reported to have an SLD
- Vocabulary probably a 'safer' bet in terms of association with other test performance, but:
 - Naming task also significantly correlated and may be more userfriendly for some groups
 - Potentially difficult to keep repeating same vocabulary test over time; easier to choose from an array of categories

- Thank you to all participants, their parents, Principals and teachers
- GUI colleagues and field interviewers
- Study is funded and overseen by the DCYA in association with the CSO
 - Steering committee, project team, REC, reviewers, Scientific Advisory group

- Correlation calculator:
 - Diedenhofen, B. & Musch, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE, 10(4): e0121945. doi:10.1371/journal.pone.0121945