

- monitoring difficult
- Children using computers at earlier ages and for longer than ever before
 - Habit formation and skill development (Livingstone et al. 2011)
- Evidence for low overall digital literacy - (European commission 2013)

2

Introduction

- Computer use has varied effects on academic performance. Mixed effects reported varying by usage intensity and application types (Casey et al. 2012)
- Consequences/Adaptations; potential changes in attentional patterns and behaviours as a result of technology use -Johnson (2016)
- Academic advantages have been seen in several large scale studies:
 - Programme for International Student Assessment (PISA) (OECD,2005) - Longitudinal Study of Australian Children (Fiorini, 2010)

Aims

Summary of Casey et al (2012)

- Importance of controlling for social gradient in test outcomes • - (Williams et al 2009)
- Better test outcomes at 9 years
- Moderate computer use
- Informational computer use
- Worse test outcomes at 9 years Social media use

Aims of current study

- · Move from cross sectional to a longitudinal view
 - Classes of behaviour (Latent classes) (Latent growth)
 - Change over time

Sample

• GUI Cohort '98 Anonymised Microdata File (AMF) Waves 1-4

Longitudinal fixed panel design

- Sample size
- Wave 1 9yrs N = 8,568
 Wave 2 13yrs N = 7,525
 Wave 3 17yrs N = 6,210
- Wave 4 20yrs N = 5,190
- Evidence of differential attrition across waves (Williams et al,
 - 2009). Re-weighted using 20yr weight

5

Growing Up

6

Academic performance variables

- 9 Year Data

 Drumcondra Primary Maths Test
 British Ability Scales (matrices)
- 13 Year Data

 Drumcondra Numerical Ability Test
- 17 Year Data — Junior Certificate Mathematics
- 20 Year Data - Leaving Certificate Mathematics

•Scoring of Junior Certificate —Junior Certificate (Grade A-E)

> –Junior Certificate level (Higher, Ordinary, Foundation)

- -Scale constructed following a coding scheme producing a Leaving Certificate points total equivalent range 10-100
- Academic scores parameterised as Z-scores Mean of zero, SD of one.

Growing Up

Computer applications at 9 and 13

- How often?
- None, a little, a lot
- Playing games
- Chatrooms
- Media Consumption
- E-mailing
- Instant messaging
- Surf for fun
- Homework
- School projects

- Computer use at 13
- How often?
 - None, a little, a lot
- Playing games
- Social Media
- Media ConsumptionSurf for fun
- Homework
- School Projects
- 5011001110
- projects

Growing Up

Computer usage intensity at 9 and 13

7

-Performs -Detereoriates -Realistic

10

Average

3

Statistical models developed

Latent Class Models

• Begin with baseline model (1

Latent growth models

- Model 1: Baseline model
- class) and increase number of latent classes to balance model fit statistics with a parsimonious number of classes of behaviour
 - Model 2: Household Level covariates
 - Model 3: Child level covariates
 - Model 4: Latent Class variables

Summary of model fit statistics

Baseline models 1-3 Covariates (Williams et al 2009)

- PCG/SCG Education
- HSD Structure
- HSD Social class
- Equivalised Income
- Child gender
- Child ability (British ability scales-Matrices)

Model Fit Statistics support all models

- Chi-sq to df ratio ✓
- CFI values above 0.9 ✓
- RMSEA values below 0.10 ✓
- SRMR values below 0.10 ✓

Model 4 summary Growth model with latent class variables

	Starting point (Intercept)	Mathematics (Standardised) β	Refer
9 years	Active users	0.20**	use
	Academically oriented users	0.32***	• No
	Non-computer users	0.23***	rela
	Non academic users ¹	Ref	inte
	Change over time (Slope)	Mathematics (Standardised) β	 Lor to cor
13 years	Active users	0.48***	and
	Academically oriented user	0.23**	use sig
	Socially oriented user	0.21**	dev
	Non academic user ¹	Ref	cru,
* p.	< .05, ** p < .01, *** p < .001		

Reference categories: ¹non academic computer users at 9 and 13

 None to moderate use related to better intercept outcomes

Longitudinally, relative to 'Non-academic' computer users, 'Active', 'Academically oriented' and 'Socially oriented' users showed significantly better developmental trajectories

Growing Up

Implications

- Findings are supported both cross-sectionally and longitudinally
- Evidence that informational computer use supports better educational outcomes
- Evidence that not engaging in productive use of computers is associated with poorer outcomes
- Support for "Ladder of opportunities" concept - (Livingstone et al. 2011)

18

